

Biochimica et Biophysica Acta 1237 (1995) 95-98

Short Sequence-Paper

Isolation of the *vma-4* gene encoding the 26 kDa subunit of the *Neurospora crassa* vacuolar ATPase

Emma Jean Bowman, Alicia Steinhardt, Barry J. Bowman *

Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA Received 21 December 1994; revised 10 April 1995; accepted 13 April 1995

Abstract

We have isolated the vma-4 gene, which encodes a 25 746 Dalton subunit of the vacuolar ATPase, from *Neurospora crassa*. The gene contains two introns and was mapped to the left arm of linkage group I. Comparison of the predicted amino acid sequence with homologous proteins from *Saccharomyces cerevisiae*, *Manduca sexta*, and *Bos taurus* showed only 25% sequence identity. However, computer-assisted predictions of secondary structures gave similar results for all four proteins. Analysis of the sequence and the available biochemical data indicated that the vma-4 gene product may play the same structural role in the vacuolar ATPase as does the γ -subunit in F-type ATPases.

Keywords: Vacuolar ATPase; ATPase, F-type; Vacuole; Proton pump; Gamma subunit; (Neurospora crassa)

The vacuolar ATPase is a large, complex enzyme which functions as a proton pump in many different types of cellular membranes [1]. In *Neurospora crassa* this enzyme may constitute 10–20% of the protein in the vacuolar membrane [2]. By pumping protons into the interior of the vacuole the vacuolar ATPase acidifies the organelle and also generates an electrochemical gradient used to drive the transport of small molecules [3].

The polypeptides making up the vacuolar ATPase are organized into two sectors. The integral membrane sector, called Vo, is composed of at least four types of polypeptides, 100 kDa, 40 kDa, 20 kDa and 16 kDa in size, in a stoichiometry of 1:1:1:6 [4]. Protruding from the membrane is a peripheral sector called V1. The N. crassa V1 is composed of at least five different polypeptides, 67 kDa, 57 kDa, 48 kDa, 30 kDa and 17 kDa [5], in a probable stoichiometry of 3:3:1:1:1 by comparison to the bovine coated vesicle enzyme [4]. Comparative analyses of the overall structures of the enzymes and of the primary sequences of several subunits strongly suggest that the vacuolar ATPase is homologous to the F-type ATPase found in mitochondrial, chloroplast and eubacterial membranes [6]. For only three subunits, however, is there a clear correspondence between F- and V-type ATPases. The 67 kDa subunit (encoded by vma-1) is the homolog of the β -subunit of F-type ATPase, the 57 kDa subunit (vma-2) is the homolog of the α -subunit [6], and the 16 kDa Vo subunit (vma-3) is the homolog of the F-type 'c' subunit [7]. The degree of sequence conservation among other subunits is low, even among F-type ATPases, and the limited data available for other vacuolar ATPase subunits have not allowed identification of F-type homologs.

In this paper we report the sequence of the gene that encodes the 30 kDa subunit of the vacuolar ATPase of N. crassa. All vacuolar ATPases appear to have a subunit of approx. 30 kDa, about the same size as the γ -subunit in F-type ATPases [1,8–11]. We wanted to identify conserved regions within the 30 kDa subunit and to see if the primary structure and the predicted secondary structure of the 30 kDa subunit showed similarity to the γ -subunit of the F-type ATPase.

Isolation of the vma-4 gene. The V1 sector of the vacuolar ATPase was prepared as described [5]. The 30 kDa subunit was isolated from polyacrylamide gels and digested with trypsin [12]. After separation by HPLC [12], six tryptic peptides were sequenced and used to design oligonucleotides for use in the polymerase chain reaction. The 5' oligonucleotide AGAT(C/T)CA(G/A)AT(C/T)-AA(G/A)GC(C/T)GA(C/T)GA(G/A)GA and the antisense of the 3' oligonucleotide GA(C/T)GA(G/A)AT-(C/T)TT(C/T)GA(G/A)GC(C/T)GC(C/T)TCCGC gave a 215 bp PCR product, which was used to screen an

^{*} Corresponding author. E-mail: bowman@orchid.ucsc.edu. Fax: +1 (408) 4593139.

 $N.\ crassa$ cDNA library in the λ ZAP vector (obtained from Sachs, M., Oregon Graduate Institute). We obtained a partial cDNA fragment (truncated at an EcoRI restriction site near the 5' end) that encoded five of the tryptic peptides we had sequenced (Fig. 1) and showed sequence similarity to the VMA4 gene from yeast [13]. The cDNA

was then used to screen a genomic library [14]. Four positive cosmid clones (14-5-H, 15-5-C, 21-7-E, and 29-3-H) were selected. From these clones a 2.9 kb *PstI* restriction fragment was subcloned, sequenced, and found to encode the complete gene, named *vma-4*. By using a 484 bp EcoRV/EcoRI fragment of the genomic DNA to

•	7.01.0										,,,,				,,,,,,	noc		,,,,,	400				1110		0110	•••		,,,,,		-
91	CCAG	GGC	CGG	GGT	TGC	TGT	TGC	CAG	CCT	TTC	TGG	CTC	CAT	CCC	AGT	GCC	AAG	CCA	GCA	TCA	TCA	ccc	TTC	CCC	AAG	CTG	CGT	CAA	CGG	GC
181	AACA	ACA	ACA	TCC	ATT	AGT	CGA	CGT	CGT	TTG	ACG	ATA	TCC	TCC	GTC	TAA	ACT.	AAA	TAC	TAC	CAG	CAA	CCG	CGA	TAC	CCT	TTG	JAGC	CCT	GT
										>	sta	rt	of	CDN	IA															
271	TTTC	CAC	ጥጥባ	ጥርል	TAC	a ጥር	'acc	ነ ል ጥ ር								A C G	ጥርጥ	ጥሮሬ	ጥሮር	יייריי	TAC	A C T	CGA	Cam	CGA	TCC		: m m a	CCT	C TT
			•••																		1110		٠٠							
261																														
361	GCCC	GCC	ACG	AGC	TTC	CCC	TCC	CAA	GGA	CGA	CGA	CGA	CAT	CAC	ATC	CTC	CAT	CAC	CGT	CCT	TCG	GAG	ACC	CGA	ACC	ACC	ACC	ACC	ACC	AC
451	CACC	ACA	ACA	CCT	'ATT	CCC	TAG	AGT	'GCC	T T C	TTA	AAC	ACC	CGC	CAA	AAT	GTC.	ACA	AGT	TCA	CGC	CTT	GTC	CGA	CGA	TCA	Ggt	aga	gee	8 6
																M	s	0	v	H	A	L	S	D	D	O)			
																		_								-				
541	++ ==	a+ a		+ ~ ~		+ = =			~ - +		2+0		~a+			. ~ .			-+-					Cm C	CON	~ ~ ~	CNC	CEC	ccci	
341	ttcc	yıc	Cay	,	_				Cat	yea	acy	uca	get	aac	Caa	aya	acc	acy	cty	CCC	acc	aac	cay							
						ıntr	on i	# I																	G	Q	5	L	R	K
																	5 '						Eco							
631	GATG	ACG	GCC	TTC	ATC	AAG	CAA	GAA	GCC	GAG	GAA	AAG	GCG	CGC	GAG	ATC	CAG	ATC	AAG	GCC	GAC	GAG	GAA	TTC	GCC	ATT	GAA	AAG	TCC	AΑ
	M	T	A	F	Ī	K	Q	E	A	E	E	K	A	R	E	I	Q	1	K	A	D	E	E	F	A	I	B	K	8	K
															-					_									J	
721	GCTG	GTC	cac	CAC	CAC	ACC	CAC	ccc	a m c	GAC	ምሮር	ccc	ጥ አ ር	GCC		3 3 G	ጥጥር	A A G	CAG	acc	CAG	A TO CO	mcc	CAG	CAG	እ ጥር	1200	icaa	TCG:	
,																												R		
	L	٧	r	¥	-	1	U	A	1	U	3	A	1	^	ĸ	K	F	Λ.	Q						¥	1	T	K	0	T
	_								_								_ (-			PCR						. .			
911	AATG																							GCC	AGC	GCC	CAG	CTC		
	M	A	N	K	T	R	L	R	V	L	G	A	R	Q	E	L	L	D	E	I	F	E	λ	λ	8	λ	Q	L	G	Q
																														_
901	AGCC	ACC	CAC	GAC	CTG	GGC	CGC	TAC	AAG	GAC	ATC	CTC	AGG	GAC	TTG	ATC	CTC	GAG	GGC	TTC	TAC	GCC	ATG	AAC	GAG	CCG	GAG	CTG	GTG	ΑT
	A	т	Ħ	D	L	G	R	Y	ĸ	D	I	L	R	D	L	İ	L	E	G	F	¥	A	M	N	E	P	E	L	٧	I
		_		_	_	_		_		_	_	_		_	_	_	_	_	-	_	-			•	_	_		_	•	_
001	CCGC		000		acc	C 3 m				C TO C	300		aca	~~~		m <i>cc</i>	666	* GC	000	C 2 C	m a c		CAC		3.00	G A T		: C B W	CMC:	
331																														
	R	A	R	Q	A	D	Y	D	A	V	R	E		A	G	W	_A_	S	_A	Q	Y	K	H	K	т	D	K	D	V	K
1081	GCCG	ACG	ATI	GAT	GCG	GAG	AAT	CCC	GTT	CCT	GAG	GGG	AGg	rtag	gtt	ata	cat	a C a	CAC	acc	atg	ctt	cgg	gct	gtg	gtg	aag	agg	aag	1 4
	A	T	I	D	A	E	N	P	٧	₽	E	G	8							I	ntr	on	#2							
							·			•																				
1171	gaag		aga	tσa	tac	taa	caa	Gad	tta	ata	tac	agC	GCC	GGT	GGC	ATC	ATC	ATC	GTT	GGC	GGA	AAC	GGC	AAG	ATC	GAT	ATC	GAC	AAC	AC
	33		- 3 -									-,-			G													D		Ţ
													••	٠	•	-	-	•	•	•	•	••	•		-	_	-	_	••	-
																						~~~			~~~				mm.c.	
1201	CTTC																												TTC	r T
	F	E	A	R	L	T	L	L	K	Ð	S	A	L	P	A	M	R	K	L	<u>L</u>	F	G	E	N	P	N	R	K	F	F
1351	CGAT	TAA	ATC	CAC	CAC	TTT	TTT	GGA	AGG	CTG	CGA	ATG	CGC	AG	AGG	CCT	ACA.	ACA	AAG	CTA	CGG	CAC	CTG	GTG	TCC	AGG	YYY	.GTG	AGA	λX
	D	end	l																											
1 4 4 1	GGGG	m ~ ~	T C II	CGA	C 2 2	3.00	ישיר	'A GA	GTG	100	CGB	226	ccc	CAC	iana	ጥልሮ	acc.	AGA	aca	ተጥር	CGT	GCT	TAC	ጥጥል	CTA	CTC	GTT	CTT	TGA	TG
	ATGI																													
1331	AIGI	rici	MI	GACI	'AA	JAC	3AC	nng:	LIME	100							GAG	Int	GG	IAG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1100	MIG	MIG	GAC	, GAA	1100	AIG	CA
															<b>,</b>															
	TGG.																													
1711	TGTI	rgg	CAT	CCT	rtg/	\GT!	rcc:	rct1	AGAC	TT	rgc	CAAT	CT	rt G	AGAA	CTG	TAC	GTT	TCC	CTGI	CAT	GGC	CAA	CCY	TTT	,VCC	TCG	JTAT	CTT	λŊ
1801	CGC1	rrc?	PAT	ATT	BCC:	TTT	CAT:	rcc:	ATAT	PAC	CGCI	AGAC	GA	ACA	AACA	GGC	AAA	GCA	AGG	CCGI	ATA	TAC	CACC	GT	CCC	LAA:	PAAC	CCA	CAA	λG
1891	TTCA	ATC	AGT	AGT	AAA	AG	AGT?	rcc	CAT	CAA (	:GC1	CAA	AC	ACC	AAAC	ATG	TCC	ATA	TAT	rccc	AGT	AAZ	AAGC	ccc	CAT	TCA	AGC	CTC	CTC	CG
	TCTT																													
	CCCI																													
																							_							
	GAAT						-			-																				
	CCAA																													
2341	GGTI	TAT	3CG/	ATT!	rgg:	TTT	CGG	GGT?	PAT	3TG1	rtg:	rdgi	'GG	rgg	ATGI	TGT	TGT	TGI	TG?	rtgi	rtga	TT	PAGO	GA!	CGG	AAC	3GG3	AACC	:AGA	AC
2431	CAGA	\AGI	AAG	AAGI	\AGI	\GG(	GAG	GGG	BAGG	ATC	CGC	GTC	GC	GA:	rgga	TAT	GCG	TAA	TAC	GT(	GGT	TTC	3GGC	CG	GAG	AAC	:אא:	<b>LGTA</b>	ATC	GG
2521	CGGA	ACG	AGG	AAGI	AAC	GG1	rcg:	rcre	IAAI	GT	3GG(	BAGA	GAT	rgT(	CGAG	GTA	GGA	GAG	AAC	3TA/	AAGG	GAI	\GG!	AA	AGT	CTC	3GG1	AAGG	GTC	GT
2611	GGAG	3GG1	AAA	ATT	TTT	GA 1	rgge	3GG1	AAGI	\GG(	3GA1	CTI	CTT	rggi	ATGA	TGA	TGA	TGA	TGI	ATG/	TGA	TG!	\TG/	TGI	TAG	AGI	<b>LAGI</b>	AAGG	GGG	GA
	AAGA																													
	GTAG																													_
- 1 - 1	GING				-55												310			/		-								

Fig. 1. Nucleotide and amino acid sequence of the genomic region encoding *vma-4*. A 2.9 kb *Pst*I restriction fragment was sequenced by the method of Sanger [29]. The region from nt 2270 to the 3' end was sequenced only in the 3' to 5' direction. Both strands were sequenced for nt 1-2270. The 5' *Pst*I site, approximately 15 bp upstream of the 5' end, is not shown because of an unresolvable sequence ambiguity in that region. Boxed nucleotides show the region corresponding to the PCR primers used to clone the cDNA. Boxed amino acids are identical to peptide fragments sequenced from the vacuolar ATPase polypeptide.

rescreen the cDNA library, we obtained a second *Eco*RI cDNA fragment derived from the 5' end of the gene. Fig. 1 shows the sequence of the genomic DNA, the regions corresponding to the cDNA, the derived amino acid sequence, and the amino acid sequences corresponding to the tryptic peptides.

Mapping of the vma-4 gene. The chromosomal location of the gene was determined by analysis of restriction fragment length polymorphisms [15], using a polymorphism for an *EcoRI* site. Vma-4 mapped to the left arm of linkage group I, near the Fsr-12 gene. None of the five other identified genes encoding vacuolar ATPase subunits in N. crassa are found on this linkage group [16] (and unpublished results).

Characteristics of the vma-4 gene and its transcript. By comparing cDNA and genomic sequences we identified two introns within the coding region. As in many other genes from filamentous fungi, including the N. crassa ATPase genes [16,17], the introns were positioned near the ends of the coding region, one after the twelfth codon and the other near the 3' end (Fig. 1). Also common to genes of filamentous fungi [16,17], we found no apparent TATA element within 300 bps of the 5' end of the cDNA and no apparent AATAAA signal for polyadenylation. We seguenced the 1200 bp region beyond the polyadenylation site and used it to search GenBank version 85. No sequence with significant similarity was identified. Using the cDNA as a probe of an RNA blot, we found a single size class of transcript, approximately 1.4 kb, similar to the size of the cDNA (1159 bp, excluding the poly(A) tail) (data not shown).

Characteristics of the vma-4 protein. The protein encoded by vma-4 contains 230 amino acids, has a molecular weight of 25746 Daltons, and has a pI of 5.45. Homologous genes or cDNAs encoding vacuolar ATPase subunits have been reported from three different organ-

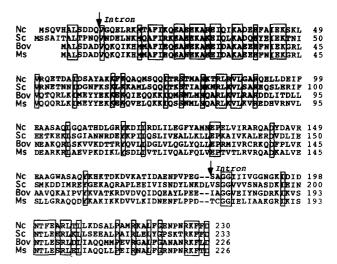



Fig. 2. Alignment of the amino acid sequence of *vma-4* with three homologous proteins. The sequences are from *N. crassa* (Nc, this report), *S. cerevisiae* (Sc, [13]), bovine kidney (Bov, [18]), and *Manduca sexta* (Ms, [19]). Residues identical in all four sequences are boxed. Arrows indicate the position of introns in the protein coding region of the *N. crassa vma-4* gene.

isms. Bovine [18] and insect (*Manduca sexta*) [19] subunits are similar to each other with 64% amino acid identity. The yeast subunit [13,20] is significantly less similar, 33–34% identical to the other two. Interestingly, the *vma-4* product from *N. crassa* is equally similar to each of the other three, 40–42%. Overall, the protein is not highly conserved with 24.7% identity among all four organisms.

The *N. crassa* gene is the only one for which intron positions have been reported. The position of the second intron corresponds to a site at which the yeast protein appears to have two extra amino acids when compared to the others (Fig. 2). Conceivably, this could mark the boundary of a domain within the protein.

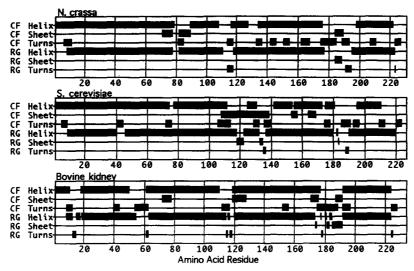



Fig. 3. Predicted secondary structures of the *vma-4* gene product and two homologs. The secondary structures were predicted by the algorithm of Chou and Fasman (CF) [30] or of Robson and Garnier (RG) [21], using the MacVector program (IBI, New Haven, CT, USA).

Although the amino acid sequences of these proteins are not highly conserved, computer-assisted analyses of the 30 kDa proteins gave similar predictions of secondary structures (Fig. 3). Especially when analyzed by the algorithm of Robson-Garnier [21] the proteins are predicted to be predominantly  $\alpha$ -helical with conserved turn regions near residues No. 120 and No. 180.

Possible role of the 30 kDa subunit in the vacuolar ATPase. The primary sequence of the 30 kDa subunit is not obviously similar to any subunit of the F-type ATPase. However, several lines of evidence lead us to suggest that the vma-4 protein may have the same structural role in the vacuolar ATPase as the F1 y-subunit in the F-type AT-Pase. In the F-type ATPase the minimal structure that retains significant ATPase activity is  $\alpha_3 \beta_3 \gamma$  [22]. For the bovine coated vesicle vacuolar ATPase, significant catalytic activity has been reported for a complex that contains only four subunits, 70, 58, 40 and 33 kDa [23,24]. Because the 70 and 58 kDa subunits are clearly the homologs of, respectively, the  $\alpha$ - and  $\beta$ -subunit in F-type ATPase, one of the other two subunits could be the homolog of the  $\gamma$ -subunit in F-type ATPase. Puopolo et al. [25] reported that the bovine 40 kDa subunit was not essential for activity when integral membrane and peripheral sectors of the ATPase were reassembled from dissociated subunits. In addition, the peripheral sector of the vacuolar ATPase from N. crassa does not appear to have a counterpart to the 40 kDa subunit observed in the bovine enzyme [5]. These observations suggest that the 40 kDa subunit may be less tightly bound to the enzyme. By contrast, the 30 kDa protein is seen prominently in essentially all purified vacuolar ATPase preparations, as would be expected if it is the homolog of the  $\gamma$ -subunit in F-ATPase.

The recent crystal structure of Abrahams et al. [26] for F1-ATPase shows clearly that each of the  $\alpha$ - and  $\beta$ -subunits interacts directly with the  $\gamma$ -subunit. Furthermore, the key interacting regions of the  $\gamma$ -subunit are  $\alpha$  helices. γ-subunits from different species are not highly conserved, but the regions of highest sequence identity are clustered in the first 50 and last 50 amino acids [27]. Like the y-subunits, the *vma-4* gene products are most highly conserved near the C and N termini (Fig. 2), and their structures are predicted to be predominantly  $\alpha$ -helical (Fig. 3). Taken together, the biochemical data and the sequence analyses suggest that in the vacuolar ATPase the vma-4 gene product is a good candidate for the structural equivalent of the  $\gamma$ -subunit in the F-type ATPase. Very recently the sequence of a 28 kDa subunit of the vacuolar ATPase from yeast and bovine cells was reported [28]. The authors suggested this subunit could be the analog of the  $\gamma$ -subunit. However, this suggestion would not be consistent with biochemical data which suggest that the 28 kDa subunit is not essential for catalytic activity [23–25].

This work was supported by US Public Health Services

grants GM28703 and GM 08123. We thank Karen Tenney for assistance in protein sequencing.

## References

- [1] Forgac, M. (1989) Physiol. Rev. 69, 765-796.
- [2] Bowman, B.J., Vazquez-Laslop, N. and Bowman, E.J. (1992) J. Bioenerg. Biomembr. 24, 361–370.
- [3] Zerez, C.R., Weiss, R.L., Franklin, C. and Bowman, B.J. (1986) J. Biol. Chem. 261, 8877-8882.
- [4] Arai, H., Terres, G., Pink, S. and Forgac, M. (1988) J. Biol. Chem. 263, 8796–8802.
- [5] Bowman, B.J., Dschida, W.J., Harris, T. and Bowman, E.J. (1989) J. Biol. Chem. 264, 15606–15612.
- [6] Gogarten, J.P., Starke, T., Kibak, H., Fishman, J. and Taiz, L. (1992) J. Exp. Biol. 172, 137–147.
- [7] Mandel, M., Moriyama, Y., Hulmes, J.D., Pan, Y.C., Nelson, H. and Nelson, N. (1988) Proc. Natl. Acad. Sci. USA 85, 5521–5524.
- [8] Kane, P.M. and Stevens, T.H. (1992) J. Bioenerg. Biomembr. 24, 383-393.
- [9] Mandala, S. and Taiz, L. (1986) J. Biol. Chem. 261, 12850-12855.
- [10] Sze, H., Ward, J.M. and Lai, S. (1992) J. Bioenerg. Biomembr. 24, 371-381.
- [11] Wieczorek, H. (1992) J. Exp. Biol. 172, 335-343.
- [12] Stone, K., LoPresti, M., Crawford, J., DeAngelis, R. and Williams, K. (1989) in A Practical Guide to Protein and Peptide Purification for Microsequencing (Matsudaira, P.T., ed.), pp. 31-47, Academic Press, San Diego, CA.
- [13] Foury, F. (1990) J. Biol, Chem. 265, 18554-18560.
- [14] Vollmer, S. and Yanofsky, C. (1986) Proc. Natl. Acad. Sci. USA 83, 4869–4873.
- [15] Metzenberg, R. and Grotelueschen, J. (1992) Fungal Genet. Newslett. 39, 50-58.
- [16] Bowman, B.J., Dschida, W.J. and Bowman, E.J. (1992) J. Exp. Biol. 172, 57-66.
- [17] Gurr, S.J., Unkles, S.E. and Kinghorn, J.R. (1987) in Gene Structure in Eukaryotic Microbes (Kinghorn, J.R., ed.), pp. 93-139, IRL Press, Oxford.
- [18] Hirsch, S., Strauss, A., Masood, K., Lee, S., Sukhatme, V. and Gluck, S. (1988) Proc. Natl. Acad. Sci. USA 85, 3004–3008.
- [19] Graf, R., Harvey, W.R. and Wieczorek, H. (1994) Biochim. Biophys. Acta 1190, 193-196.
- [20] Ho, M.N., Hill, K.J., Lindorfer, M.A. and Stevens, T.H. (1993) J. Biol. Chem. 268, 221-227.
- [21] Garnier, J., Osguthorpe, D.J. and Robson, B. (1978) J. Mol. Biol. 120, 97-120.
- [22] Senior, A.E. (1990) Annu. Rev. Biophys. Chem. 19, 7-41.
- [23] Peng, S.B., Stone, D.K. and Xie, X.S. (1993) J. Biol. Chem. 268, 23519–23523.
- [24] Xie, X.S. and Stone, D.K. (1988) J. Biol. Chem. 263, 9859-9867.
- [25] Puopolo, K., Sczekan, M., Magner, R. and Forgac, M. (1992) J. Biol. Chem. 267, 5171-5176.
- [26] Abrahams, J.P., Leslie, A.G., Lutter, R. and Walker, J.E. (1994) Nature 370, 621–628.
- [27] Walker, J.E., Fearnley, I.M., Gay, N.J., Gibson, B.W., Northrop, F.D., Powell, S.J., Runswick, M.J., Saraste, M. and Tybulewicz, V.L. (1985) J. Mol. Biol. 184, 677-701.
- [28] Nelson, H., Mandiyan, S. and Nelson, N. (1995) Proc. Natl. Acad. Sci. USA 92, 497-501.
- [29] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [30] Chou, P.Y. and Fasman, G.D. (1978) Annu. Rev. Biochem. 47, 251-276.